QueryBuilder
Description — How to use QueryBuilder to build effective queries with Couchbase Lite on Java
Related Content — Predictive Query | Live Query | Indexing
The examples used in this topic are based on the Travel Sample app and data introduced in the Couchbase Mobile Workshop tutorial |
Introduction
Couchbase Lite for Java’s database queries are defined using the QueryBuilder API. This uses query statements of the form shown in Example 1. The structure and semantics of the query format are based on that of Couchbase’s N1QL query language.
SELECT ____ (1)
FROM 'database' (2)
WHERE ____, (3)
JOIN ____ (4)
GROUP BY ____ (5)
ORDER BY ____ (6)
- Query Components
-
1 The SELECT statement specifies the document properties that will be returned in the result set 2 FROM specifies the database to query the documents from 3 WHERE statement specifies the query criteria.
The `SELECT`ed properties of documents matching this criteria will be returned in the result set4 JOIN statement specifies the criteria for joining multiple documents 5 GROUP BY statement specifies the criteria used to group returned items in the result set 6 ORDER BY statement specifies the criteria used to order the items in the result set
We recommend working through the query section of the Couchbase Mobile Workshop as a good way to build your skills in this area. |
Indexing
Before we begin querying documents, let’s briefly mention the importance of having a query index. A query can only be fast if there’s a pre-existing database index it can search to narrow down the set of documents to examine — see: Example 2, which shows how to create an index and our Query Troubleshooting topic.
See the Indexing topic to learn more about indexing. |
This example creates a new index for the type
and name
properties in the Data Format shown.
[
{ (1)
"id": "hotel123",
"type": "hotel",
"name": "Hotel Ghia"
},
{ (2)
"id": "hotel456",
"type": "hotel",
"name": "Hotel Deluxe",
}
]
database.createIndex(
"TypeNameIndex",
IndexBuilder.valueIndex(
ValueIndexItem.property("type"),
ValueIndexItem.property("name")));
Every index has to be updated whenever a document is updated, so too many indexes can hurt performance. Thus, good performance depends on designing and creating the right indexes to go along with your queries. |
SELECT statement
- In this section
- Related
Use the SELECT
statement to specify which properties you want to return from the queried documents.
You can opt to retrieve entire documents, or just the specific properties you need.
Return All Properties
Use the SelectResult.all()
method to return all the properties of selected documents — see: Example 3.
This query shows how to retrieve all properties from all documents in your database.
Query query = QueryBuilder
.select(SelectResult.all())
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("hotel")));
The query.execute statement returns the results in a dictionary, where the key is the database name — see Example 4.
[
{
"travel-sample": { (1)
"callsign": "MILE-AIR",
"country": "United States",
"iata": "Q5",
"icao": "MLA",
"id": 10,
"name": "40-Mile Air",
"type": "airline"
}
},
{
"travel-sample": { (2)
"callsign": "ALASKAN-AIR",
"country": "United States",
"iata": "AA",
"icao": "AAA",
"id": 10,
"name": "Alaskan Airways",
"type": "airline"
}
}
]
1 | Here we see the result for the first document matching the query criteria. |
2 | Here we see the result for the next document matching the query criteria. |
See: Result Sets for more on processing query results.
Return Selected Properties
To access only specific properties, specify a comma separated list of SelectResult
expressions, one for each property, in the select statement of your query — see: Example 5
In this query we retrieve and then print the _id
, type
and name
properties of each document.
The query.execute
statement returns one or more key-value pairs, one for each SelectResult expression, with the property-name as the key — see Example 6
[
{ (1)
"id": "hotel123",
"type": "hotel",
"name": "Hotel Ghia"
},
{ (2)
"id": "hotel456",
"type": "hotel",
"name": "Hotel Deluxe",
}
]
1 | Here we see the result for the first document matching the query criteria. |
2 | Here we see the result for the next document matching the query criteria. |
See: Result Sets for more on processing query results.
WHERE statement
- In this section
-
Comparison Operators | Collection Operators | Like Operator | Regex Operator | Deleted Document
Like SQL, you can use the WHERE
statement to choose which documents are returned by your query.
The select statement takes in an Expression
.
You can chain any number of Expressions in order to implement sophisticated filtering capabilities.
Comparison Operators
The Expression Comparators can be used in the WHERE statement to specify on which property to match documents.
In the example below, we use the equalTo
operator to query documents where the type
property equals "hotel".
[
{ (1)
"id": "hotel123",
"type": "hotel",
"name": "Hotel Ghia"
},
{ (2)
"id": "hotel456",
"type": "hotel",
"name": "Hotel Deluxe",
}
]
Query query = QueryBuilder
.select(SelectResult.all())
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("hotel")))
.limit(Expression.intValue(10));
for (Result result : query.execute()) {
Dictionary all = result.getDictionary(DATABASE_NAME);
Log.i("Sample", String.format("name -> %s", all.getString("name")));
Log.i("Sample", String.format("type -> %s", all.getString("type")));
}
Collection Operators
ArrayFunction Collection Operators are useful to check if a given value is present in an array.
CONTAINS Operator
The following example uses the ArrayFunction
to find documents where the public_likes
array property contains a value equal to "Armani Langworth".
{
"_id": "hotel123",
"name": "Apple Droid",
"public_likes": ["Armani Langworth", "Elfrieda Gutkowski", "Maureen Ruecker"]
}
Query query = QueryBuilder
.select(
SelectResult.expression(Meta.id),
SelectResult.property("name"),
SelectResult.property("public_likes"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("hotel"))
.and(ArrayFunction
.contains(Expression.property("public_likes"), Expression.string("Armani Langworth"))));
for (Result result : query.execute()) {
Log.i(
"Sample",
String.format("public_likes -> %s", result.getArray("public_likes").toList()));
}
IN Operator
The IN
operator is useful when you need to explicitly list out the values to test against.
The following example looks for documents whose first
, last
or username
property value equals "Armani".
Expression[] values = new Expression[] {
Expression.property("first"),
Expression.property("last"),
Expression.property("username")
};
Query query = QueryBuilder.select(SelectResult.all())
.from(DataSource.database(database))
.where(Expression.string("Armani").in(values));
Like Operator
- In this section
String Matching
The Like() operator can be used for string matching.
The like
operator performs case sensitive matches.
To perform case insensitive matching, use Function.lower
or Function.upper
to ensure all comparators have the same case, thereby removing the case issue.
This query returns landmark
type documents where the name
matches the string "Royal Engineers Museum", regardless of how it is capitalized (so, it selects "royal engineers museum", "ROYAL ENGINEERS MUSEUM" and so on).
Note the use of Function.lower
to transform name
values to the same case as the literal comparator.
Query query = QueryBuilder
.select(
SelectResult.expression(Meta.id),
SelectResult.property("country"),
SelectResult.property("name"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("landmark"))
.and(Function.lower(Expression.property("name")).like(Function.Expression.string("royal engineers museum")))));
for (Result result : query.execute()) {
Log.i("Sample", String.format("name -> %s", result.getString("name")));
}
Wildcard Match
We can use %
sign within a like
expression to do a wildcard match against zero or more characters.
Using wildcards allows you to have some fuzziness in your search string.
In the example below, we are looking for documents of type
"landmark" where the name property matches any string that begins with "eng" followed by zero or more characters, the letter "e", followed by zero or more characters.
Once again, we are using Function.lower
to make the search case insensitive.
The following query will return "landmark" type
documents with name matching "Engineers", "engine", "english egg" , "England Eagle" and so on.
Notice that the matches may span word boundaries.
Query query = QueryBuilder
.select(
SelectResult.expression(Meta.id),
SelectResult.property("country"),
SelectResult.property("name"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("landmark"))
.and(Function.lower(Expression.property("name")).like(Expression.string("eng%e%"))));
for (Result result : query.execute()) {
Log.i("Sample", String.format("name -> %s", result.getString("name"))); }
Wildcard Character Match
We can use an _
sign within a like expression to do a wildcard match against a single character.
In the example below, we are looking for documents of type "landmark" where the name
property matches any string that begins with "eng" followed by exactly 4 wildcard characters and ending in the letter "r".
The following query will return "landmark" type
documents with the name
matching "Engineer", "engineer" and so on.
Query query = QueryBuilder
.select(
SelectResult.expression(Meta.id),
SelectResult.property("country"),
SelectResult.property("name"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("landmark"))
.and(Function.lower(Expression.property("name")).like(Expression.string("eng____r"))));
for (Result result : query.execute()) {
Log.i("Sample", String.format("name -> %s", result.getString("name"))); }
Regex Operator
Similar to the wildcards in like
expressions, regex
based pattern matching allow you to introduce an element of fuzziness in your search string.
Note though, that the regex
operator is case sensitive.
For more on the regex spec used by Couchbase Lite see cplusplus regex reference page |
The code shown in Example 8 executes a query that will return documents of type "landmark" with a name matching "Engine", "engine" and so on.
This example returns documents with a type
of "landmark" and a name
property that matches any string that begins with "eng" and ends in the letter "e".
Query query = QueryBuilder
.select(
SelectResult.expression(Meta.id),
SelectResult.property("country"),
SelectResult.property("name"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("landmark"))
.and(Function.lower(Expression.property("name")).regex(Expression.string("\\beng.*r\\b")))); ResultSet rs = query.execute();
for (Result result : query.execute()) {
Log.i("Sample", String.format("name -> %s", result.getString("name"))); }
1 | The \b specifies that the match must occur on word boundaries. |
Deleted Document
You can query documents that have been deleted (tombstones) [1].
This example shows how to query deleted documents in the database. The result set it returns is an array of key-value pairs. One for each document matching the criteria — see Select Document Id Only for how to work with this result set.
// Query documents that have been deleted
Where query = QueryBuilder
.select(SelectResult.expression(Meta.id))
.from(DataSource.database(database))
.where(Meta.deleted);
JOIN statement
The JOIN clause enables you to select data from multiple documents that have been linked by criteria specified in the JOIN statement. For example to combine airline details with route details, linked by the airline id — see Example 10.
This example JOINS the document of type route
with documents of type airline
using the document ID (id
) on the _airline document and airlineid
on the route document.
Query query = QueryBuilder.select(
SelectResult.expression(Expression.property("name").from("airline")),
SelectResult.expression(Expression.property("callsign").from("airline")),
SelectResult.expression(Expression.property("destinationairport").from("route")),
SelectResult.expression(Expression.property("stops").from("route")),
SelectResult.expression(Expression.property("airline").from("route")))
.from(DataSource.database(database).as("airline"))
.join(Join.join(DataSource.database(database).as("route"))
.on(Meta.id.from("airline").equalTo(Expression.property("airlineid").from("route"))))
.where(Expression.property("type").from("route").equalTo(Expression.string("route"))
.and(Expression.property("type").from("airline").equalTo(Expression.string("airline")))
.and(Expression.property("sourceairport").from("route").equalTo(Expression.string("RIX"))));
for (Result result : query.execute()) {
Log.w("Sample", String.format("%s", result.toMap().toString()));
}
GROUP BY statement
You can perform further processing on the data in your result set before the final projection is generated. The following example looks for the number of airports at an altitude of 300 ft or higher and groups the results by country and timezone.
{
"_id": "airport123",
"type": "airport",
"country": "United States",
"geo": { "alt": 456 },
"tz": "America/Anchorage"
}
This example shows a query that selects all airports with an altitude above 300ft. The output (a count, $1) is grouped by country, within timezone.
Query query = QueryBuilder.select(
SelectResult.expression(Function.count(Expression.string("*"))),
SelectResult.property("country"),
SelectResult.property("tz"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("airport"))
.and(Expression.property("geo.alt").greaterThanOrEqualTo(Expression.intValue(300))))
.groupBy(
Expression.property("country"),
Expression.property("tz"))
.orderBy(Ordering.expression(Function.count(Expression.string("*"))).descending());
for (Result result : query.execute()) {
Log.i(
"Sample",
String.format(
"There are %d airports on the %s timezone located in %s and above 300ft",
result.getInt("$1"),
result.getString("tz"),
result.getString("country")));
}
The query shown in Example 11 generates the following output:
There are 138 airports on the Europe/Paris timezone located in France and above 300 ft
There are 29 airports on the Europe/London timezone located in United Kingdom and above 300 ft
There are 50 airports on the America/Anchorage timezone located in United States and above 300 ft
There are 279 airports on the America/Chicago timezone located in United States and above 300 ft
There are 123 airports on the America/Denver timezone located in United States and above 300 ft
ORDER BY statement
It is possible to sort the results of a query based on a given expression result. The example below returns documents of type equal to "hotel" sorted in ascending order by the value of the title property.
Query query = QueryBuilder
.select(
SelectResult.expression(Meta.id),
SelectResult.property("name"))
.from(DataSource.database(database))
.where(Expression.property("type").equalTo(Expression.string("hotel")))
.orderBy(Ordering.property("name").ascending())
.limit(Expression.intValue(10));
For (Result result : query.execute()) {
Log.i("Sample", String.format("%s", result.toMap()));
}
The query shown in Example 12 generates the following output:
Aberdyfi
Achiltibuie
Altrincham
Ambleside
Annan
Ardèche
Armagh
Avignon
Date/Time Functions
Couchbase Lite documents support a date type that internally stores dates in ISO 8601 with the GMT/UTC timezone.
Couchbase Lite 2.5 adds the ability to run date comparisons in your Couchbase Lite queries. To do so, four functions have been added to the Query Builder API:
Function.StringToMillis(Expression.Property("date_time"))
-
The input to this will be a validly formatted ISO 8601
date_time
string. The end result will be an expression (with a numeric content) that can be further input into the query builder. Function.StringToUTC(Expression.Property("date_time"))
-
The input to this will be a validly formatted ISO 8601
date_time
string. The end result will be an expression (with string content) that can be further input into the query builder. Function.MillisToString(Expression.Property("date_time"))
-
The input for this is a numeric value representing milliseconds since the Unix epoch. The end result will be an expression (with string content representing the date and time as an ISO 8601 string in the device’s timezone) that can be further input into the query builder.
Function.MillisToUTC(Expression.Property("date_time"))
-
The input for this is a numeric value representing milliseconds since the Unix epoch. The end result will be an expression (with string content representing the date and time as a UTC ISO 8601 string) that can be further input into the query builder.
Result Sets
- In this section
-
Processing | Select All Properties | Select Specific Properties | Select Document Id Only | Select Count-only | Handling Pagination
Processing
This section shows how to handle the returned result sets for different types of SELECT
statements.
The result set format and its handling varies slightly depending on the type of SelectResult statements used. The result set formats you may encounter include those generated by :
-
SelectResult.all — see: All Properties
-
SelectResult.expression(property("name")) — see: Specific Properties
-
SelectResult.expression(meta.id) — Metadata (such as the
_id
) — see: Document ID Only -
SelectResult.expression(Function.count(Expression.all())).as("mycount") — see: Select Count-only
To process the results of a query, you first need to execute it using Query.execute
.
The execution of a Couchbase Lite for Java’s database query typically returns an array of results, a result set.
-
The result set of an aggregate, count-only, query is a key-value pair — see Select Count-only — which you can access using the count name as its key.
-
The result set of a query returning document properties is an array.
Each array row represents the data from a document that matched your search criteria (theWHERE
statements) The composition of each row is determined by the combination ofSelectResult
expressions provided in theSELECT
statement. To unpack these result sets you need to iterate this array.
Select All Properties
The Select
statement for this type of query, which returns all document properties for each document matching the query criteria, is fairly straightforward — see Example 13
try {
this_Db = new Database("hotels");
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
Query listQuery = QueryBuilder.select(SelectResult.all())
.from(DataSource.database(this_Db));
The result set returned by queries using SelectResult.all
is an array of dictionary objects — one for each document matching the query criteria.
For each result object, the key is the database name and the 'value' is a dictionary representing each document property as a key-value pair — see: Example 14.
[
{
"travel-sample": { (1)
"callsign": "MILE-AIR",
"country": "United States",
"iata": "Q5",
"icao": "MLA",
"id": 10,
"name": "40-Mile Air",
"type": "airline"
}
},
{
"travel-sample": { (2)
"callsign": "ALASKAN-AIR",
"country": "United States",
"iata": "AA",
"icao": "AAA",
"id": 10,
"name": "Alaskan Airways",
"type": "airline"
}
}
]
1 | Here we see the result for the first document matching the query criteria. |
2 | Here we see the result for the next document matching the query criteria. |
In this case access the retrieved document properties by converting each row’s value, in turn, to a dictionary — as shown in Example 15.
try {
for (Result result : listQuery.execute().allResults()) {
// get the k-v pairs from the 'hotel' key's value into a dictionary
thisDocsProps = result.getDictionary(0)); (1)
thisDocsId = thisDocsProps.getString("id");
thisDocsName = thisDocsProps.getString("Name");
thisDocsType = thisDocsProps.getString("Type");
thisDocsCity = thisDocsProps.getString("City");
// Alternatively, access results value dictionary directly
final Hotel hotel = new Hotel();
hotel.Id = result.getDictionary(0).getString("id"); (2)
hotel.Type = result.getDictionary(0).getString("Type");
hotel.Name = result.getDictionary(0).getString("Name");
hotel.City = result.getDictionary(0).getString("City");
hotel.Country= result.getDictionary(0).getString("Country");
hotel.Description = result.getDictionary(0).getString("Description");
hotels.put(hotel.Id, hotel);
}
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
1 | Here we get the dictionary of document properties using the database name as the key. You can add this dictionary to an array of returned matches, for processing elsewhere in the app. |
2 | Alternatively you can access the document properties here, by using the property names as keys to the dictionary object. |
Select Specific Properties
Here we use SelectResult.expression(property("<property-name>")))
to specify the document properties we want our query to return — see: Example 16.
try {
this_Db = new Database("hotels");
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
Query listQuery =
QueryBuilder.select(SelectResult.expression(Meta.id),
SelectResult.property("name"),
SelectResult.property("Name"),
SelectResult.property("Type"),
SelectResult.property("City"))
.from(DataSource.database(this_Db));
The result set returned when selecting only specific document properties is an array of dictionary objects — one for each document matching the query criteria.
Each result object comprises a key-value pair for each selected document property — see Example 17
[
{ (1)
"id": "hotel123",
"type": "hotel",
"name": "Hotel Ghia"
},
{ (2)
"id": "hotel456",
"type": "hotel",
"name": "Hotel Deluxe",
}
]
1 | Here we see the result for the first document matching the query criteria. |
2 | Here we see the result for the next document matching the query criteria. |
Access the retrieved properties by converting each row into a dictionary — as shown in Example 18.
try {
for (Result result : listQuery.execute().allResults()) {
// get data direct from result k-v pairs
final Hotel hotel = new Hotel();
hotel.Id = result.getString("id");
hotel.Type = result.getString("Type");
hotel.Name = result.getString("Name");
hotel.City = result.getString("City");
// Store created hotel object in a hashmap of hotels
hotels.put(hotel.Id, hotel);
// Get result k-v pairs into a 'dictionary' object
Map <String, Object> thisDocsProps = result.toMap();
thisDocsId =
thisDocsProps.getOrDefault("id",null).toString();
thisDocsName =
thisDocsProps.getOrDefault("Name",null).toString();
thisDocsType =
thisDocsProps.getOrDefault("Type",null).toString();
thisDocsCity =
thisDocsProps.getOrDefault("City",null).toString();
}
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
Select Document Id Only
You would typically use this type of query if retrieval of document properties directly would consume excessive amounts of memory and-or processing time — see: Example 19.
try {
this_Db = new Database("hotels");
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
Query listQuery =
QueryBuilder.select(SelectResult.expression(Meta.id).as("metaID"))
.from(DataSource.database(this_Db));
The result set returned by queries using a SelectResult expression of the form SelectResult.expression(meta.id)
is an array of dictionary objects — one for each document matching the query criteria.
Each result object has id
as the key and the ID value as its value — -see Example 20.
[
{
"id": "hotel123"
},
{
"id": "hotel456"
},
]
In this case, access the required document’s properties by unpacking the id
and using it to get the document from the database — see: Example 21.
try {
for (Result result : listQuery.execute().allResults()) {
// get the ID form the result's k-v pair array
thisDocsId = result.getString("metaID"); (1)
// Get document from DB using retrieved ID
Document thisDoc = this_Db.getDocument(thisDocsId);
// Process document as required
thisDocsName = thisDoc.getString("Name");
}
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
1 | Extract the Id value from the dictionary and use it to get the document from the database |
Select Count-only
Query listQuery = QueryBuilder.select(
SelectResult.expression(Function.count(Expression.string("*"))).as("mycount")) (1)
.from(DataSource.database(this_Db));
1 | The alias name, mycount , is used to access the count value. |
The result set returned by a count such as Select.expression(Function.count(Expression.all)))
is a key-value pair.
The key is the count name, as defined using SelectResult.as
— see: Example 23 for the format and Example 22 for the query.
{
"mycount": 6
}
1 | Here we see the key-value pair returned by a count. |
Access the count using its alias name (mycount
in this example) — see Example 24
try {
for (Result result : listQuery.execute()) {
// Retrieve count using key 'mycount'
Integer altDocId = result.getInt("mycount");
// Alternatively, use the index
Integer orDocId = result.getInt(0);
}
// Or even miss out the for-loop altogether
Integer resultCount = listQuery.execute().next().getInt("mycount");
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
1 | Get the count using the SelectResult.as alias, which is used as its key. |
Handling Pagination
One way to handle pagination in high-volume queries is to retrieve the results in batches.
Use the limit
and offset
feature, to return a defined number of results starting from a given offset — see: Example 25.
try {
this_Db = new Database("hotels");
} catch (CouchbaseLiteException e) {
e.printStackTrace();
}
int thisOffset = 0;
int thisLimit = 20;
Query listQuery =
QueryBuilder
.select(SelectResult.all())
.from(DataSource.database(this_Db))
.limit(Expression.intValue(thisLimit),
Expression.intValue(thisOffset)); (1)
1 | Return a maximum of limit results starting from result number offset |
For more on using the QueryBuilder API, see our blog: Introducing the Query Interface in Couchbase Mobile |