Predictive Query
Description — Couchbase mobile database predictive query concepts
Enterprise Edition only
Predictive Query is an Enterprise Edition feature.
|
Predictive Query enables Couchbase Lite queries to use machine learning, by providing query functions that can process document data (properties or blobs) via trained ML models.
Let’s consider an image classifier model that takes a picture as input and outputs a label and probability.
To run a predictive query with a model as the one shown above, you must implement the following steps.
Integrate the Model
To integrate a model with Couchbase Lite, you must implement the PredictiveModel
interface which has only one function called predict()
.
// `myMLModel` is a fake implementation
// this would be the implementation of the ml model you have chosen
@interface myMLModel : NSObject
+ (NSDictionary*)predictImage: (NSData*)data;
@end
@interface ImageClassifierModel : NSObject <CBLPredictiveModel>
- (nullable CBLDictionary*) predict: (CBLDictionary*)input;
@end
@implementation ImageClassifierModel
- (nullable CBLDictionary*) predict: (CBLDictionary*)input; {
CBLBlob* blob = [input blobForKey:@"photo"];
NSData* imageData = blob.content;
// `myMLModel` is a fake implementation
// this would be the implementation of the ml model you have chosen
NSDictionary* modelOutput = [myMLModel predictImage:imageData];
CBLMutableDictionary* output = [[CBLMutableDictionary alloc] initWithData: modelOutput];
return output; (1)
}
@end
1 | The predict(input) -> output method provides the input and expects the result of using the machine learning model.
The input and output of the predictive model is a DictionaryObject .
Therefore, the supported data type will be constrained by the data type that the DictionaryObject supports. |
Register the Model
To register the model you must create a new instance and pass it to the Database.prediction.registerModel
static method.
ImageClassifierModel* model = [[ImageClassifierModel alloc] init];
[[CBLDatabase prediction] registerModel:model withName:@"ImageClassifier"];
Create an Index
Creating an index for a predictive query is highly recommended. By computing the predictions during writes and building a prediction index, you can significantly improve the speed of prediction queries (which would otherwise have to be computed during reads).
There are two types of indexes for predictive queries:
Value Index
The code below creates a value index from the "label" value of the prediction result. When documents are added or updated, the index will call the prediction function to update the label value in the index.
CBLQueryExpression* input = [CBLQueryExpression dictionary: @{@"photo":[CBLQueryExpression property:@"photo"]}];
CBLQueryPredictionFunction* prediction = [CBLQueryFunction predictionUsingModel:@"ImageClassifier" input:input];
CBLValueIndex* index = [CBLIndexBuilder valueIndexWithItems:@[[CBLValueIndexItem expression:[prediction property:@"label"]]]];
[database createIndex:index withName:@"value-index-image-classifier" error:&error];
Predictive Index
Predictive Index is a new index type used for predictive query. The Predictive Index is different from the value index in that the Predictive Index caches the predictive result and creates the value index from the cached predictive result when the predictive results values are specified.
The code below creates a predictive index from the "label" value of the prediction result.
CBLQueryExpression* input = [CBLQueryExpression dictionary:@{@"photo":[CBLQueryExpression property:@"photo"]}];
CBLPredictiveIndex* index = [CBLIndexBuilder predictiveIndexWithModel:@"ImageClassifier" input:input properties:nil];
[database createIndex:index withName:@"predictive-index-image-classifier" error:&error];
Run a Prediction Query
The code below creates a query that calls the prediction function to return the "label" value for the first 10 results in the database.
CBLQueryExpression* input = [CBLQueryExpression dictionary: @{@"photo":[CBLQueryExpression property:@"photo"]}];
CBLQueryPredictionFunction* prediction = [CBLQueryFunction predictionUsingModel:@"ImageClassifier" input:input]; (1)
CBLQueryExpression* condition = [[[prediction property:@"label"] equalTo:[CBLQueryExpression string:@"car"]]
andExpression:[[prediction property:@"probablity"] greaterThanOrEqualTo:[CBLQueryExpression double:0.8]]];
CBLQuery* query = [CBLQueryBuilder select: @[[CBLQuerySelectResult all]]
from: [CBLQueryDataSource database:database]
where: condition];
// Run the query.
CBLQueryResultSet *result = [query execute:&error];
NSLog(@"Number of rows :: %lu", (unsigned long)[[result allResults] count]);
1 | The PredictiveModel.predict() method returns a constructed Prediction Function object which can be used further to specify a property value extracted from the output dictionary of the PredictiveModel.predict() function.
|
Unregister the Model
To unregister the model you must call the Database.prediction.unregisterModel
static method.
[[CBLDatabase prediction] unregisterModelWithName:@"ImageClassifier"];
Integrate a Model with CoreMLPredictiveModel (iOS only)
CoreMLPredictiveModel
is a Core ML based implementation of the PredictiveModel
protocol that facilitates the integration of Core ML models with Couchbase Lite.
The following example describes how to load a Core ML model using CoreMLPredictiveModel
.
All other steps (register, indexing, query, unregister) are the same as with a model that is integrated using your own PredictiveModel
implementation.
// Load MLModel from `ImageClassifier.mlmodel`
NSURL* modelURL = [[NSBundle mainBundle] URLForResource:@"ImageClassifier" withExtension:@"mlmodel"];
NSURL* compiledModelURL = [MLModel compileModelAtURL:modelURL error:&error];
MLModel* model = [MLModel modelWithContentsOfURL:compiledModelURL error:&error];
CBLCoreMLPredictiveModel* predictiveModel = [[CBLCoreMLPredictiveModel alloc] initWithMLModel:model];
// Register model
[[CBLDatabase prediction] registerModel:predictiveModel withName:@"ImageClassifier"];